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Possible identification of two mathematical models of transpiration cooling is 
analyzed. Processes with heat supply in parallel with or normal to the direction 
of the injection of a coolant are considered. 

As is known, two models are used for calculating thermal fields in a porous plate in the 
case when heat supply is in parallel with the direction of injection of a coolant. The first 
of'them can be called a model of two continua: in this model, the coolant and a solid phase 
are considered as different continua enclosed in the same geometrical volume determined by 
the plate. The model assumes, generally speaking, a certain difference in temperatures at 
any point in the volume of the continua. The bulk velocity of heat exchange between the 
solid phase and the coolant is described by the expression =v(T-~). The thermal fields are 
determined from the solution of the following system of equations (it is assumed that heat 
conduction of the coolant can be neglected): 

d2T/dx2= ~xd~dx, 

d~/dx = a(T --  ~). (1)  

The boundary conditions at the inlet and the outlet of the plate for the general case 
are written as follows: 

- d T . / a x  = ~ o  (~_ - -  T . )  + ~ ,  ( 2 )  

--  dTb/dX = ~xab (Tb-- Tb) "~ ~b (Tb-- Oh) +q~. (3) 

In  Eq. ( 3 ) ,  we use s e p a r a t e  terms f o r  h e a t  f lows from the  wa l l  t o  the  c o o l a n t  and from 
the wall to the ambient medium, in which the coolant is injected. As a ground for such 
separation might serve the fact that heat exchange between the wall and the coolant is al- 
ways the case (of course, when the wall is supplied with the heat energy), while heat ex- 
change between the wall and the ambient medium may also be nonexistant. 

We note that the choice of the thermal head is not fundamental for defining the criteria 
o a, a b. In Eqs. (2), (3), its maximal value is used both at the inlet and at the outlet. 

Proceeding from the energy balance, one can readily obtain 

%= a~T.-}- (1-- ~)  ~-, (4) 

T+= %T6-}- (1-- ab)%. (5) 

Formulas (i)-(5) represent a mathematical description of the two-continuum model of 
transpiration cooling. 

The one-continuum model is used alongside with the two-continuum model. The former 
assumes the identity of the temperaures of the solid phase and the coolant throughout the 
entire volume of the wall, and the heat sink toward the coolant is described by the expres- 
sion mcpdT/dx. The equation defining the thermal field is of the form 

(6) 
d~T/dx~= ~dT/dx. 
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The boundary condition at the inlet in the porous wall deserves special mention. Using 
the identity T ~ ~, accepted for the volume of the wall, toward the surface of the outlet, we 
obtain T a = T a. This equality expresses the fundamental for the one-continuum model conjec- 
ture, according to which the coolant "must" be heated up to the temperature of the wall by 
the moment of penetrating it. (To be more exact, it is, of course, suggested that heating 
"must" occur in a negligibly thin layer of a porous metal.) Heat flow required for such 
heating is, apparently, equal ~x(T_ - Ta). In correspondence with this, by analogy with (2), 
we write 

- -  dTa/dx = ~x (~---  T a) + q~. ( 7 ) 

I t  should  be emphasized t h a t  Eq. (7) i s  the  on ly  s u b s t a n t i a t e d  boundary c o n d i t i o n  on 
the surface of the inlet for the one-continuum model. 

On the surface of the outlet, thermal flow from the porous wall to the coolant is equal 
to zero since their temperatures are equal, therefore 

- - d T J d x  = ~b (Tb-- Oh) -k q~. (8) 

Equat ions  ( 6 ) - ( 8 )  give  a mathemat ica l  d e s c r i p t i o n  of  a one-continuum model of  t r a n s p i r a -  
t i o n  coo l i ng .  

Comparing the given models, an inference can be made that the two-continuummodel is 
physically a more convincing one, however, requiring more information and being more compli- 
cated in a mathematical sense. As for the one-continuum model, it is less convincing physi- 
cally (it is unlikely necessary to prove that the identity between the temperature of the 
porous material and the coolant cannot exist). However, this model is simpler in a mathe- 
matical sense and does not require the knowledge of such scarcely studied values as the co- 
efficients of heat transfer in the porous material and at its inlet and outlet. 

It might be well to point out the works using both the two-continuum [1-6] and the one- 
continuum [7-9] models. 

It is natural to pose a question on how much the solution of system (i) differs from that 
of Eq. (6). Under conditions of sufficient closeness of these solutions, we will assume that 
it is possible to identify the two models, otherwise, it is impermissible. 

Apparently, the closeness of solutions (i), (6) depends on the degree of closeness of 
the temperatures of the solid phase and of the coolant along the thickness of the porous wall. 
As can be readily seen from the second equation of system (i), the difference �9 - �9 deter- 
mines two values: the criterion a and the derivative dT/dx. Therefore, considering the 
limitation of the derivative, the problem of possible identification of the two models from 
a mathematical point of view reduces to the determination of the limiting criterion o (desig- 
nated as o ) starting from which the solution of system (i) differs sufficiently little from 
the solution of Eq. (6). Since the derivative dT/dx is a function of the criteria a, ~x, Oa, 
Ob and of the type of the boundary conditions, it is completely clear that in the general 
case a~ is a function of the criteria ~x, Oa, ~ and the type of the boundary conditions. 
Below we define the form of this function. 

We introduce the parameter q, by which we will evaluate the closeness of solutions (i) 
and (6): U = max(InT[, [UT[)" The value of UT determines the difference in the maximal 
temperatures of the wall, calculated with the help of the one- and two-continuum models: 

UT = (T(6) - T(1))/T(1). The superscript shows that the temperature is obtained from solu- 
max max max 

tion (i) or (6). The value U~ determines the difference in the heating temDeratures of the 
coolant, calculated with the help of the models under consideration: DT = (T[~) - T+)/ (~+ - 
T_)~ 

Thus, the use of the parameter U allows one to evaluate the closeness of solutions (i) 
and (6) from the two factors that are of greatest practical importance: maximum temperature 
of the wall and the heating temperature of the coolant. 

The calculation process was as follows. In Eqs. (2), (3), (7), (8) one of the terms 
describing the ambient supply of heat energy to the wall was alternately nonzero; i.e., in 
other words, the type of the boundary conditions was changed. For each case, the criterion 
a a was varied from zero to one. The criterion Ob in (3) was always thought to be equal to 
a a. (Such an assumption can be "justified" by the fact that for the problem in question, 
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Fig. i. Dependence of o~ on ~x and o a for 
transpiration cooling with heat supply 
parallel to the direction of injection: 
solid line, a a = 0; dot-dash line, o a = 
0.5. For o a = i a~ < i0 -s. 

solution (i) was of interest to us for those o for which the difference T-~ along the 
thickness of the wall is sufficiently small. In this case, the difference Tb-T b is even 
smaller, and, consequently, the corresponding heat flow is small. Consequently, in the 
case under consideration, the criterion a b did not practically affect the structure of the 
solution of system (I),) 

Thus, by noting ~x for each type of the boundary conditions and for a certain go, we 
selected a value of the criterion a from the interval 10-3-103 so that N was between 0.15- 
0.20. Such a value of a was taken as a~ for the case under consideration. Then by varying 
the criteria ~x, ga and the type of the boundary conditions, we obtained a number of values 
of a~, which allowed us to determine the form of the studied function. 

We note that system (i) has been solved numerically, with a certain error that is 
characteristic of the method. That is why the results give below, in particular, the form 
of the function g~, are approximate in nature. 

The analysis of the results of calculations allowed us to find that the value a~ did 
not depend practically on the type of the boundary conditions and, thus, was a function of 
the two arguments only, ~x, aa (see Fig. I). 

As is seen from Fig. i, the complete set of values of the criterion a can be divided 
into two regions. In the first region, situated above the solid line in Fig. i, solutions 
(i) and (6) independently of the criteria ~x and a a differ little (in the sense of in- 
equality N < 0.2) from each other, i.e., in this region, the two models can be identified 
unquestionably. In the second region, situated below the solid line, the difference between 
solutions (i) and (2) depends already on the criteria ~x and a a. As this takes place, the 
difference is small when the inequality a ~ a~ holds, otherwise, ~ > 0.2 and the difference 
can be significant. Thus, in the second region, the identification of two models is possible 
observing a certain limitation on the criteria a, ~x, and a a only. 

The value of a~ depends strongly on ~x, aa, being extremely small for ga = 1 (at any 
rate, less than i0-3), and of order of ~x for o a = 0 (for ~x > i). 

We consider the models of transpiration cooling with heat supply normal to injection 
and with bulk heat evolution. 

The mathematical description of the two-continuum model is as follows: 

• - c~2T/O!t2= zLO'~/Ox - -  q, dTlOx = ~ ( T  - -  T). ( 9 )  

The boundary condition on the surface of the coolant inlet to the plate is of the form 

- - O T d O x  = ~ ( '~- - -  Ta) .  (lO) 
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The boundary condition on the surface of the outlet is 

- -  OY~/Ox --  ~ %  ( T b - -  %). ( 1 1 )  

On t h e  l o w e r  and u p p e r  s i d e s  o f  t h e  p l a t e ,  t h e  b o u n d a r y  c o n d i t i o n s  in  t h e  g e n e r a l  c a s e  a r e  
written as 

- -  aTn/@ = ~ (0~- -  T~) + q~, ( 12 ) 

- -  O T j @  = ~ ( T ~ - -  0~) -1- q~. ~ (13) 

In order to obtain the complete set of boundary conditions, we have to add Eq. (4) to 
conditions (10)-(13). The temperature of the coolant far from the surface of the outlet can 
be determined from Eq. (5). 

The mathematical description of the one-continuum model is 

zO2T/Ox2-~O2T/Og2= ~OT/ax--q. (14) 

To derive the boundary condition at the coolane inlet at a porous wall, we will use the 
principal conjecture of the one-continuum model, according to which the coolant "must" reach 
the temperature of the wall in a negligibly thin layer of the porous metal. In this case, by 
analogy with (7) we can readily obtain 

- -  O T j a x  = ~ (~_- -  Ta). (15)  

The boundary condition at the coolant outlet in the absence of heat exchange with the ambient 
medium and in the absence of heat flows with consideration of Eq. (8) is of the form 

OTb/Ox = 0 .  ( 16 ) 

The b o u n d a r y  c o n d i t i o n s  on t h e  u p p e r  and l ower  s i d e s  o f  t h e  p l a t e  f o r  t h e  o n e - c o n t i n u u m  model  
a r e  f o r m u l a t e d  by a n a l o g y  w i t h  (12)  and ( 1 3 ) .  

As i s  shown a b o v e ,  f rom t h e  m a t h e m a t i c a l  p o i n t  o f  v i e w ,  t h e  p r o b l e m  o f  p o s s i b l e  i d e n t i -  
f i c a t i o n  of the two-continuum model with the one-continuum model reduces to the determination 
of a limiting value of the criterion o = o~, starting from which the solution of system (9) 
differs sufficiently little from solution (14). Apparently, in the general case o= is a 
function of the criteria ~, K, Oa, o k and of the type of the boundary conditions on the 
lower and upper sides of the plate. The form of this functional dependence is investigated 
below. 

As a preliminary measure, we note a few qualitative results concerning the function 
o=. We consider the problem with bulk heat evolution. In this case, the first equation of 
system (9) takes the form 

• 2= ~d~dx--q. (17) 

Letting K = 0 in this equation (physically, this is possible, for example, for X x = 0) and 
using the second of Eqs. (9), we obtain 

T -- �9 = ( ~ ) / ~ .  

The expression in parentheses on the right side, as is readily seen, determines the heating 
of the coolant. We choose the scale for the temperature T from the condition that the 
heating is equal to unity (we recall that T enters the denominator of q). Then we obtain 

T - -  �9 = I/~. (18)  

Thus for problems where the conductive heat flow in the direction of the injection can 
be ignored, the ratio i/o estimates the order of smallness of T--r. As calculations show, for 
problems with heat supply normal to injection and with bulk heat evolution, the difference 
from zero of the term K82T/ax 2 in system (9) and Eq. (14) plays an insignificant role for the 
problem in question, and, thus, Eq. (18) reflects rather precisely the real ratio of the 
temperatures. Based on this, it is natural to expect that the function o~ depends weakly on 
its arguments and is of the order of ten. Calculations support this conclusion. 

We pass now to the description of the calculation process. Heat exchange with the ambient 
medium was specified with the help of Eq. (12), in which either ~n or q~ were assumed to be 
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Fig. i. Dependence of o~ on ~x and o a 
for transpiration cooling with bulk 
heat evolution: solid line, a a = 0; 
dot-dash line, a a = 0.5, dashed line, 
aa=l. 

different from zero. The upper side of the plate was assumed to be heat-insulated; for the 
problem with bulk heat evolution, the upper and the lower sides of the plate were assumed to 
be heat-isolated. We varied the criteria K and a a (in the range 0-i), ~ (in the range 10 -2- 
102), a b was always assumed to be equal to a a (see above for a remark with regard to this), 
The closeness of the solutions of system (9) and Eq. (14) is evaluated from two parameters: 
qT and q~, similar to those introduced above. The limiting value of the criterion a - a~ 
was selected from the requirement that q = max(lqTl , lq~l) was between 0.15 and 0.20. 

System (9) and Eq. (14) were solved numerically. In connection with this the results 
stated below have a certain "error" in the framework of the error of the numerical method. 

As a result of calculation, it has been found that for problems in which heat energy 
supply to the plate is determined by Eq. (12), the form of the limiting function does not 
depend practically on the nature of heat exchange with the external source and variations 
in the criteria ~, ~, and s a affect the value of a~ rather weakly. Thus, the limiting func- 
tion for problems with heat supply normal to injection reduces simply to a constant. Its 
value is determined by the following approximate equality a~ % 6. 

The form of the limiting function is somewhat more complicated for the problem with bulk 
heat evolution. (First of all, we note that by dividing the first of Eqs. (9) by K and by 
making an appropriate selection for the scale of the temperature T, it is possible to exclude 
K from a number of the arguments a~.) As calculations show, a~ in this case depends on a a 
and ~x (see Fig. 2). 

In correspondence with Fig. 2, the entire set of values of the criterion o for the 
problem with bulk heat evolution can be divided in three regions. In the first region, 
situated above the solid line in Fig. 2, the solution of system (9) and that of Eq. (14) 
differ little regardless of the criteria ~x and a a, and, consequently, the two models can 
certainly be identified. In the second region, bounded by the solid and dashed lines, iden- 
tification is possible, if the inequality a ~ o~ holds. Otherwise, the difference between 
solutions (9) and (14), generally speaking, can be significant. In the third region, situated 
below the dashed line, identification is inadmissible, irrespective of the criteria a x and ~a" 

The value of the limiting function for the problem with bulk heat evolution is small, 
and in the region of small ~x it depends: significantly on the criterion ~a, with increase of 
~x the effect of the o a weakens, and the limiting function tends, apparently, to its asymp- 
tote, approximately equal to 6. 

As for the problems with heat supply normal to injection, for them, in correspondence 
with the aforementioned, the entire set of values of the criterion o can be divided into two 
regions. In the first, where o > 6, identification of the two models is admissible; in the 
second, where a < 6, the difference between solutions (9) and (14), generally speaking, can be 
significant and, therefore, identification is inadmissible. 

A problem of possible identification of the two models has been considered above with 
rather poor accuracy. The analysis of calculations has allowed us to determine that the 
value q decreases quickly with an increase in o. Thus, if we assume that a~ = i0, then q 
will not exceed a few hundredths and, therefore, the difference in solutions (9) and (14) 
will constitute, all in all, a few percent. This result holds for both problems with bulk 
heat evolution and problems with heat supply that is normal to injection. 
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As calculations show, the one-continuummodel has a tendency to "overestimate" the 
quality of transpiration cooling as compared with the two-continuum model; in particular, 
for the first boundary-value problems this results in an overestimation of the coolant heating, 
for the second, it results in underestimating the maximal wall temperature. 

We note that this conclusion holds true for problems with heat supply both parallel 
and normal to the injection. 

NOTATION 

~, heat-transfer coefficient; T, T, dimensionless temperature of porous material and 
coolant, respectively; x, coordinate directed along the direction of motion of the coolant 
and related to the size of the porous plate in this direction L; y, coordinate normal to the 
x-axis and related to the size of the porous plate in the direction of yH; m, coolant mass 
flow rate per unit cross-sectional area; Cp, coolant heat caDacity; %x, %'~, thermal conduc- 
tivities of the porous plate in corresponding directions; qX(y), x(y) projJection of the 
ambient heat flow; @, ambient temperature; T, temperature scale (used as the denominator of 
the dimensionless temperature); q = qvH2/(%yT), where qv is the bulk-heat release density. 

Criteria: ~x=mcpL/lx; ~ = avL/(~ep) ; om is the limiting value of o; oa(b)= ~a(bl/(icp); ~b=ab L/%x; ~v(n)= 

%(n)H/EV; • = XxH~/(~yL~); ~=mcvH2/(XyL ) . Indices: V is referred to the volume of the porous 

material, a, b, v, and n are referred to the different surfaces of the porous plate, respec- 
tively: inlet, outlet, upper, lower (along the y axis); -, +, to the region far from the 
inlet, far from the outlet of the porous plate. 
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